Vivekananda Global University, Jaipur

Minutes: Agenda Item Circulated to Academic Council Members For Approval on 28.03.2023

Council Members were informed that the Academic Council at its 21st meeting held on 6th October, 2022 had approved offering of Online and Distance Education programmes by the university and approved offering of B.A., BBA, BCA, MA (English) and MBA programmes in Online mode.

Members were also informed that now the university proposes to offer BCA, BBA, BA (Any three subjects:- Economics, Political Science, Public Policy and Development, International Relations, Psychology, English, History, Computer Applications), B.Com, MBA, (HR, Marketing, Finance, IT), MCA, M.Sc. (Mathematics) and MA (English) programmes in Open and Distance Learning mode and B.Com, MCA and M.Sc. (Mathematics) programmes in Online Learning mode.

The Self Learning Material (SLM), Syllabus and Programme Project Report (PPR) of the above programmes circulated to the members for consideration were approved for offering in ODL and OL mode for the AY 2023-24.

Council members considered and approved offering of above mentioned programmes and other documents Open and Distance Learning and Online Learning Mode.

For Vivekananda Giobal University, Jaipur strar (Dr. Praveen Choudhry Registrar

Programme Project Report (PPR) Preparation Guidelines

Vivekananda Global University Jaipur (Rajasthan)

Programme Project Report (PPR) Preparation Guidelines

Overview

A Programme Project Report (PPR) is a comprehensive document outlining the details of a proposed program for Open and Distance Learning (ODL) and Online Learning (OL) modes. Centre for Distance and Online Education, VGU, to ensure the systematic and high-quality preparation of Programme Project Reports (PPRs) for proposed ODL programs follows the mentioned guidelines, align with Annexure-V, UGC DEB Regulation-2020 and uphold the institution's commitment to academic excellence and compliance. PPR for all of our programs includes-

(a) Clear Program Objectives and Expected Outcomes:

Define the program's objectives and the expected results it aims to achieve.

(b) Identification of the Target Group of Learners:

Identify the specific audience or learners the program is designed for.

(c) Assurance of Program Quality for Specific Skills:

Ensure that the program maintains high-quality standards for imparting specific skills.

(d) Development and Design of Program Content:

Create a detailed plan for the content and curriculum of the program.

(e) Cost Estimates for Program Development:

Estimate the financial requirements for the development of the program.

(f) Admission, Delivery, and Evaluation Procedures:

Define the procedures for student admissions, program delivery, and evaluation.

The PPR serves as a formal declaration by the Centre for Distance and Online Education at Vivekananda Global University (CDOE, VGU) regarding its intention to launch a program in ODL For Vivekananda Global University, Jaipur and/or OL mode. It not only sets the direction and objectives but also outlines the learning experiences, all with a focus on achieving specific results.

Contents of Programme Project Report (PPR):

a) Program's Mission and Objectives:

- Define the program's mission and objectives, ensuring alignment with VGU's academic goals.
- Ensure that the program's objectives are in harmony with industry or learner demands.

b) Relevance of the Program with HEI's Mission and Goals:

Plan a program that aligns with VGU's mission and goals, making it a significant contributor to the institution's achievements.

c) Nature of Prospective Target Group of Learners:

- Identify the target group of learners and their specific learning needs.
- Design the curriculum to cater to the diverse backgrounds and needs of various learner groups.

d) Appropriateness of Program to Acquire Specific Skills and Competence:

- Clearly define the program's learning outcomes, with a focus on acquiring specific skills and competencies.
- Ensure that the program content is tailored to meet these defined outcomes.

e) Instructional Design:

- Describe the curriculum design, syllabi, program duration, and faculty requirements.
- Define the instructional methods and media types (print, audio, video, online) and outline the learner support services.

f) Procedure for Admissions, Curriculum Transaction, and Evaluation:

- Establish clear admission policies, including eligibility criteria and fee structures.
- Provide information on financial assistance options if applicable.
- Outline the methods and tools for program delivery, along with an activity planner.
- Define the policies, methods, and tools for evaluating learner progress.

g) Requirement of Laboratory Support and Library Resources:

- Specify the need for laboratory support for programs (if requires) with practical For Vivekananda Global University, Jaipur components.
- Offer guidelines for learners' access to practical resources.

h) Cost Estimate of the Program and Provisions:

Include a detailed cost estimate covering program development, delivery, and maintenance.

i) Quality Assurance Mechanism and Expected Program Outcomes:

- Define a systematic review mechanism for the program.
- Continuously enhance curriculum and instructional design standards to meet professional requirements.
- Establish a monitoring mechanism to ensure program effectiveness in ODL and/or OL mode.

VIVEKANANDA GLOBAL UNIVERSITY

Programme Project Report

Master of Science (Mathematics)

JAIPUR

For Whetenanda Hobal University

Programme Project Report

1 About Vivekananda Global University

Vivekananda Global University (VGU) is a young forward-looking multidisciplinary State private university established by the Act of Rajasthan State Legislature (11/2012) as specified by UGC under section 22 of the UGC Act 1956. VGU has been awarded the prestigious A+ grade by the National Assessment and Accreditation Council (NAAC) with a Cumulative Grade Point Average (CGPA) of 3.29 on a scale of 4. The A+ grade has placed VGU amongst the India's most elite and prestigious Higher Educational Institutions (HEI) which is maintaining top standards in delivering and disseminating quality education to its students. The University has a quality infrastructure with well-equipped & modern laboratories and classrooms, state of art studios, enriched IT enabled library, solar plant and bio-gas plant, STP to name few. VGU offers career-oriented programs at UG, PG, and Doctorate level in 14 disciplines of Agriculture, Engineering and Technology, Computer science and application, Architecture and planning, Design, Basic & Applied Sciences, International trade & Commerce, Management, Law, Humanities and Social Sciences, Journalism & Mass Communication, Hospitality, Medical Sciences, and Pharmacy. More than 4000 students hailing from 33 states/UTs of India and 23 countries are pursuing their studies in various programmes which are taken care by the team of more than 300 well qualified faculty members. The University's commitment towards quality education, research, innovation has been recognized by the Ministry of Education, GOI, which ranked VGU in the Band of 6-25 in private institutions all over India and No. 1 in Rajasthan in ARIIA, ASSOCHAM awarded "University of the Year - West". Our MIIC has been awarded 4.5 stars by Ministry of Education, GOI. The commitment has also been recognized by various Government bodies such as NITI Aayog, and Ministry of MSME who granted R&D funding of Rs 242 Lakh for establishing first Atal Community Innovation Centre and Rs 100 Lakh under ASPIRE scheme for creating a Technology Business incubator respectively. Recently, Swavlamban Chair for MSME Solutions has been awarded by SIDBI with a grant of around Rs 1.45 Core. VGU is committed to excellence in education, research and innovation with a focus on developmental issues.

The University is entitled to offer programmes in Online Mode and is offering three programmes namely MBA, BBA and BCA through its Centre for Distance and Online Education (CDOE-VGU) from January 2023 Session.

2 Vision and Mission of Vivekananda Global University

Vision

To develop an institution with a commitment to excellence in education, research and consultancy and we will nurture and promote human advancement. Our goal is to make the university a preferred institute for young women and men who are aspiring for productive careers. We want to develop them as professionals of global standard.

Mission

To promote quality education, training, research, consultancy, and enhance employability and entrepreneurial skills of our students. To integrate industry with academics in order to prepare our students in an immersive way for the world of work developing an effective interface with the industry and other institutes within and outside the country is the cornerstone of our approach. To meet these ends, we encourage and nurture the development of students' physical, mental, emotional, secular, and spiritual faculties.

2.1 Programme's Mission and Objectives

In keeping with the overall mission of the VGU, the M.Sc. (Mathematics) programme ensures accessibility of quality higher education to all.

The Objectives are:

- i. To enable learners for applying knowledge to solve the complex scientific problems and become competent professional at global level.
- ii. To identify, formulate and analyze advanced scientific problems on the basis of principles of science.
- iii. To Conduct investigations of a complex problem using scientific knowledge for analysis and interpretation of the data
- iv. To develop Mathematical problem solving skill which are essential for success in world of work
- V. To expose students to current trends in research about mathematics

3 Relevance of the Program with Vivekananda Global University, JaipurMission and Goals

M.Sc.(Mathematics) programme in ODL Mode will be closely aligned with the Vision and Mission of the University, in vowing to mentor students' physical, mental, emotional, secular and spiritual attributes to become a valued human resource. As per NEP 2020, the curriculum and syllabus has been designed at par with the conventional mode for better flexibility to learners

4 Nature of prospective target group of learners:

The learners in ODL mode are basically employed with Public / Private sectors, overaged learners for conventional mode, home-makers and learners who couldn't complete with the conventional education system for enhancement of qualification.

The target group of learners will be those students who are deprived of admission in the regular mode due to limited intake capacity, dropouts primarily due to social, financial, and economic compulsions as well as demographic reasons, population of any age and those living in remote areas where higher education institutes are not easily accessible. Delivery through ODL and online mode also contributes towards Gross Enrolment Ratio (GER) of 50% by 2035, as envisaged by the Government of India.

5 Appropriateness of programme to be conducted in Open and Distance Learning mode to acquire specific skills and competence

The M.Sc. (Mathematics) programme will ensure the following skills and competences in the learners.

- i. Able to enter new fields through independent study
- ii. Have a good understanding of the most important mathematical theories including a deep knowledge of the foundation of Mathematics
- iii. Able to perform calculations including use of numerical methods and computing to solve problems
- iv. Understanding of the nature and methods of mathematics research and how it can be applied in other fields such as engineering
- v. Also to carry out professional activities in the area of applied technologies and industry

6 Instructional Design:

The M.Sc. Mathematics programme proposed here has been approved by the statutory bodies of the University. Further, the University will revise the curriculum and syllabi

of its M.Sc. Mathematics programme once in every three years to ensure that the content is updated to reflect current academic knowledge and practice, and also to ensure that the University provide the best learning experiences possible for students. Academic staff and experts in the area of Mathematics propose changes in the curriculum and syllabi at the curriculum and syllabus revision workshop generally convened at least six months before the due date of curriculum and syllabus revision. Major changes are then submitted to the Board of Studies of Department of Mathematics of the University for Final Approval. As part of curriculum design, the curriculum and syllabus revision workshop consider curriculum analysis of social needs, translating the needs into course, splitting the objectives into specific objectives, grouping the specific objectives into subjects, deriving the subjects from the classification, specifying enabling objectives, unitizing each subject matter, specification of required time and syllabus .

Curriculum Design

The University appointed highly competent academicians and experts to design the Curriculum and syllabus of the Program. Courses are designed in an impressive, effective and balanced manner, to enrich the students academically with a sequenced skills and knowledge base.

	WI.SC. WATHEWATIC	5 SCHENIE EFFE		JIVI 2023-24				
	17	SEMESTER I	-	≤ 1				
Course	University Course	Course Name		Teaching				
Code	Type		Internal	External	Credit			
PGMAT101	Discipline Specific Core (Theory)	Advanced Abstract Algebra	30	70	4			
PGMAT102	Discipline Specific Core (Theory)	Topology	30	70	4			
PGMAT103	Discipline Specific Core (Theory)	Integral Transforms	30	70	4			
PGMAT105	Discipline Specific Core (Theory)	Special Functions	30	70	4			
PGMAT106	Discipline Specific Core (Practical)	MATLAB	30	70	2			
PGMAT104	Department Specific Elective 1 (Choose Any One)	Differential Geometry	30	70	4			
UGCSE101/ UGCSE111		Object Oriented Programming with C++ with Theory and Lab	30	70	4			

Programme structure and detailed syllabus Programme Structure

M So MATHEMATICS SCHEME EEFECTIVE FDOM 2023 24

	Total Credits													
	M.Sc. MATHEMATICS S	CHEME EFFECTIVE F	ROM 2023-	-24										
	SI	EMESTER II												
Course Code	University Course Type	Course Name	Teaching											
Course Code	Oniversity Course Type	Course Maine	Internal	External	Credit									
PGMAT111	Discipline Specific Core	Mathematical	30	70	4									
	(Theory)	Programming	20		<u> </u>									
PGMAT112	(Theory)	Advanced Numerical Analysis	30	70	4									
PGMAT113	Discipline Specific Core	Integral Equations and	30	70	4									
	(Theory)	Calculus of Variations												
PGMAT114	Discipline Specific Core	Discrete Mathematical	30	70	4									
	(Theory)	Structures												
PGMAT115	Discipline Specific Core	Numerical Analysis	30	70	2									
	(Practical)	Lab – I												
PGMAT116	Department Specific Elective 2 (Choose Any	Functional Analysis	30	70	4									
I.	One)	Computer System												
G		Organization	30	70	4									
C C			1											
S			5											
Е		1 Fr	1 11											
2	X		TI											
1	111		10											
4			~											
Total Credits	1 - 1 - 1	100	-											
	15		~1											

	M.Sc. MATHEMATICS	S SCHEME EFFECT	IVE FROM	1 2023-24	
			1		
Course Code	University Course Type	Course Name		Teaching	
			Internal	External	Credit
	Core Theory	Advanced Linear Algebra	30	70	4
	Core Theory	Operations Research	30	70	4
	Core Theory	Tensor Analysis	30	70	4
	Department Specific Elective 3	Choose any one from list of DSE Courses	30	70	4
	Department Specific Elective 4	Choose any one from list of DSE Courses	30	70	4
	Core Practical	Numerical Analysis Lab – II	30	70	2

SEMESTER IV													
Course	University Course Type	Course Name	Te	aching Schem	ie								
Couc			Internal	External	Credit								
	Core Practical	Project	30	70	8								
	Core Practical	Seminar	30	70	1								
	Core Practical	LaTeX Lab	30	70	1								
	Department Specific Elective 5	Choose any one from list of DSE Courses	30	70	4								
	Department Specific Elective 6	Choose any one from list of DSE Courses	30	70	4								
	Department Specific Elective 7	Choose any one from list of DSE Courses	30	70	4								

	ST OF DEPARTMEN	T SPECIFIC ELECTIVE COURSES
S. No.	Course Code	Department Specific Elective
1.		Fluid Mechanics
2.		Mathematics in Multimedia
3.		Mathematical Modeling
4.		Wavelet Analysis
5.	IAIP	Fuzzy Sets and Applications
6.		Cryptography
7.		Mathematical Statistics
8.		Differential Equation and Finite Element
0.		Analysis

	M.Sc. MATHEMA	FICS SCHEME EFFE	CTIVE FR	OM 2023-24				
		SEMESTER I						
Course	University Course	Course Name	Teaching					
	Туре		Internal	External	Credit			
PGMAT101	Discipline Specific Core (Theory)	Advanced Abstract Algebra	3	1	4			
PGMAT102	Discipline Specific Core (Theory)	Topology	3	1	4			
PGMAT103	Discipline Specific Core (Theory)	Integral Transforms	3	1	4			
PGMAT105	Discipline Specific Core (Theory)	Special Functions	3	1	4			
PGMAT106	Discipline Specific Core (Practical)	MATLAB	0	0	2			
PGMAT104	Department Specific Elective 1 (Choose Any One)	Differential Geometry	3	1	4			
UGCSE101/	15	Programming for	3	0	4			
UGCSE111		Problem Solving	5	0				
	13	Total Credits		m				
	VIVEA	Fr		RSITY				

JAIPUR

Syllabi of Courses in Semester I

	Course: Mathematics										
Prerequisite: Solid understanding of	of basic algebraic structures (gro	oups, rings, and fields),									
familiarity with proof techniques, an	nd knowledge of linear algebra	and mathematical logic.									
Semester: I	Core: DSC	Program/Class: M.Sc. (Mathematics)									
Course Code:	Course Title:										
PGMAT101 Advanced Abstract Algebra											
After studying this course, the stu	Course Outcomes: dent will be able to										
 CO1: Develop a thorough undersite CO2: Analyze the concept of solar and apply the Jordan-Holder the uniqueness of composition series. CO3: Apply factorization theory the domains. CO4: Understand ring homomorphisms between rings and series. 	anding of quotient groups and i lvable groups and identify their corem to decompose finite gro o analyze the unique factorization orphism, quotient modules, ar as and their algebraic properti- teorem of Ring Isomorphism, all simplify algebraic expressions e	r fundamental properties oups and understand the on of elements in integral ad completely reducible es, including finite and lowing them to establish effectively.									
13	Topics	~/									
Unit I: Quotient groups- Fundamen	tal theorem of homomorphism.										
Unit II: Structure theory of groups-	free abelian groups, finitely ge	nerated abelian groups.									
Unit III: Group actions on a set, Sy	low's Theorem.										
Unit IV: Solvable groups, Jordan-H	Iolder Theorem.										
Unit V: Normal series, Quotient rin	gs, Maximal and prime ideal.										
Unit VI: Polynomial rings, Factoriz	ation theory of Integral domain	s, Prime fields.									
Unit VII: Extension of fields.											
Unit VIII: Ring homomorphism an	d Quotient modules.										
Unit IX: Completely reducible mod	lules, Free modules over polyno	omial rings.									
Unit X: Unit Over a Ring and Prope	erties of Unit										
Unit XI: Fundamental Theorem of	ring isomorphism.										
Unit XII: Field of Quotients and en	nbedding of rings.										

Suggested Books:

NVEK

- 1. Joseph A. Gallian, (1999), Contemporary Abstract Algebra, Narosa Publishing House, New Delhi.
- 2. Artin M., (2011), Algebra, Prentice Hall India, New Delhi.
- 3. Ramanathan K.G., (1954), Lectures in Abstract Algebra, TIFR.
- 4. Jacobson N., (1964), Lectures in Abstract Algebra, Vol. III, Van Nostrand, Princeton.
- 5. Dummit D.S. and Foote R.M., (2008), Abstract Algebra, Wiley India Pvt. Ltd.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO	1		5	-	5	U	/	0	,	U	1	2	1	2	5	7
1	3	3	2	1	1	1	2	2	2	3	2	2	3	2	1	1
CO 2	3	3	2	1	1	1	2	2	2	3	2	2	3	3	2	1
CO 3	3	3	2	1	1	1	2	2	2	3	2	2	3	2	1	1
CO 4	3	3	2	1	1	аP	2	2	2	3	2	2	3	3	2	1
CO 5	3	3	2	1	1	1	2	2	2	3	2	2	3	3	2	1
CO 6	3	3	2	2	1	1	2	2	2	3	2	2	3	3	2	1

JAIPUR

ŝ

-

	Course: Mathematics	8								
Prerequisite: Solid unde	erstanding of calculus, including li	mits, continuity, and basic set								
theory, as well as familia	rity with proof techniques and bas	ic concepts in analysis and algebra.								
Semester:	Core: DSC	Program/Class:								
Ι		M.Sc. (Mathematics)								
Course	Course									
Code:	Title:									
PGMAT102	Topology									
	Topology									
	Course Outcomes:									
After studying this cours	e, the student will be able to									
 CO1: Define and explain the concept of topological spaces and understand the notions of neighborhoods, interior, exterior, and boundary of sets in a topological space. CO2: Understand fundamental concepts in topology, including bases and sub-bases, subspaces and relative topology, neighborhood systems, continuous mapping and homeomorphism, as well as nets and filters. CO3: Apply separation axioms T₀, T₁, T₂, T₃, T₄, analyze and classify different topological spaces based on their levels of separation. CO4: Identify and analyze compact spaces using different techniques, such as sequential compactness and Baire's Category Theorem. CO5: Apply compactness principles and locally compact properties in problem-solving and advanced mathematical research. CO6: Understand the product spaces and their basic properties, including the construction of product topologies and the product of connected spaces 										
15	Tonics	21								
	Topics									
Unit I: Definition and ever	mples of topological spaces									
Unit II: Interior exterior	and houndary accumulation point	a open sets								
Unit III: Closed sets deriv	and boundary, accumulation point	s, open sets.								
Unit III: Closed sets, della	Submoss and relative topolo	ary unighly only and arrestoring								
Unit IV: Bases and sub-ba	ses, Subspaces and felalive topolo	gy, neighborhood systems.								
Unit V: Continuous mappi	ng and nomeomorphism.									
Unit VI: Nets and Filters.		• .• • • .•								
Unit VII: The separation a	xioms T_0, T_1, T_2 , and their character	erizations, basic properties.								
Unit VIII: The separation	axioms T_3 , T_4 , and their characteri	zations, basic properties, Urysohn								
Metrization theorem, Tietz	e extension theorem									
Unit IX: Compactness-Bas	sic properties of compactness, Con	npactness and finite intersection								
property, Sequential, Com	pact space, and B-W compactness									
Unit X: Locally compaction	ess and Locally Compact Space.									
Unit XI: Product space, Co	onnected spaces and their basic pro-	operties.								
Unit XII: Locally connect	edness and locally connected spac	es.								

Suggested Books:

1. Kelley J.L., (1995), General Topology, Van Nostrand.

2. Munkers, J.R., (2015), Topology- A First Course, Pearson Education India.

3. Bredon G.E., (2014), Topology and Geometry, Springer.

4. Joshi, K.D., (2017), Introduction to General Topology, New Age International Private Limited.

5. Davis S.W., (2006), Topology, Tata McGraw Hill.

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO																
1	3	3	2	1	1	1	2	2	2	3	2	2	3	2	2	1
CO 2	3	3	2	1	1	1	2	2	2	3	2	2	3	3	2	1
CO 3	3	3	2	1	1	91	2	2	2	3	2	2	3	3	2	1
CO 4	3	3	2	2	1	1	2	2	2	3	2	2	3	3	2	1
CO 5	3	3	2	2	1	1	2	2	2	3	2	2	3	2	1	1
CO 6	3	3	2	1	1	1	2	2	2	3	2	2	3	2	1	1
	VIVE															
	VGU															
							I A		P	UF	2					

	Course: Mathematics	2
Prerequisite: Strong four	dation in calculus, complex analy	vsis linear algebra differential
acustions and familiarity	with elementary transforms	ysis, inical algebra, differential
Somostor: I	Corre: DSC	Drogram/Class
Semester: 1	Core: DSC	Frogram/Class:
		M.Sc. (Mathematics)
Course Code:	Course Title:	
PGMAT103	Integral	
	Transforms	
	Course Outcomes:	
Students will be able to-		
CO1: Know the use of L	anlace transform in system mod	aling digital signal processing
process control solving B	oundary Value Problems	ening, digital signal processing,
CO2: Understand the Fe	urier transform and its properti	including the Fourier sine
coz. Olderstand the Fo	forms	es, including the Fourier sine,
CO3: Apply Laplace and	I Fourier transforms to solve of	rdinary and nartial differential
acustions demonstrating	reficiency in their practical appl	ications
CO4: A pply the L splace to	ransform method to obtain solution	not for linear and time invariant
ODEs and use the Fourie	ansion method to obtain solution	and functions in the frequency
domain	er Transform to analyze signals	and functions in the frequency
CO5: Understand the Mel	lin transform including its defin	ition and elementary properties
and apply the Mellin tran	sform to various functions and a	nalyze its behavior in different
contexts	storm to various functions and a	haryze its behavior in different
CO6: Understand the Han	kel transform including its defin	ition and elementary properties
and apply the Hankel tran	sform to various functions and a	nalyze its behavior in different
contexts	storm to various functions and a	haryze its behavior in different
	Topics	
Unit I: Laplace transform-	Definition and its properties, Rul	es of manipulation.
Unit II: Laplace transform	of derivatives and integrals.	
Unit III: Properties of inver	rse Laplace transform, Convolution	on theorem.
Unit IV: Fourier transform	- Definition and properties of Fo	urier sine, cosine and complex
transforms.		
Unit V: Convolution theore	m, Inversion theorems.	
Unit VI: Fourier transforms	of derivatives.	
Unit VII: Applications of L	aplace transform for Solution of	ordinary and partial differential
equations.	-	
Unit VIII: Applications of	Fourier Transform for Solution o	f ordinary and partial
differential equations.		
Unit IX: Mellin Transform:	Definition and elementary prope	erties.
Unit X: Mellin transforms of	of derivatives and Integrals, Inver	rsion theorem, Convolution
theorem.	C	
Unit XI: Hankel transform-	- Definition and elementary prop	erties.
Unit XII: Hankel transform	of derivatives, Inversion theorem	n, Parseval Theorem.
Suggested Books:	,	,

- 1. Murrey R.S., (1965), Laplace Transforms (SCHAUM Outline Series), McGraw Hill.
- 2. Lokenath D., Bhatta, D., (2014), Integral Transforms and Their Applications, Taylor and Francis.
- 3. John M.W., (2011), Integral Transforms in Applied Mathematics, Cambridge University Press.
- 4. Davies B., (2012)., Integral Transforms and Their Applications, Springer New York, NY.
- 5. Hildebrand F.B., (1992), Methods of Applied Mathematics, Dover Publications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO	PSO
													1	2	3	4
CO																
1	3	3	3	3	2	1	2	3	2	3	2	2	3	3	2	3
CO			_								-	-				
2	3	2	2	1	1	1	2	3	1	3	2	2	3	3	2	3
CO						1		1	0	1						
3	3	3	3	3	2	1	2	3	3	3	3	2	2	3	2	3
CO					1	~	X			1	0					
4	3	2	2	2	1	V.	2	3	2	3	3	2	2	2	2	3
CO	3				1			~			0	1				
5		2	2	2	1	1	2	3	1	3	2	2	2	2	1	2
CO	3			12	ν.				1.7.1			1				
6		2	2	2	1	1	2	3	1	3	2	2	2	2	1	2

JAIPUR

UNEK

	Course: Mathematics	S							
Prerequisite: Strong foun	dation in calculus, algebra, and f	amiliarity with functions, including							
exponential, logarithmic, t	rigonometric, and hyperbolic fur	nctions.							
Semester: I	Core: DSC	Program/Class:							
		M.Sc. (Mathematics)							
Course Code:	Course Title:								
PGMAT105	Special Functions								
	Course Outcomes:	I							
After studying this course, the student will be able to									
CO1. Hadamatand the Commerciant Data for theme in 1 1' of i 16'''									
elementary properties ar	d applications in various mather	natical fields							
CO2 : Understand the	Hypergeometric Function inclu	uding its definition integral							
representation, transform	ations, and elementary propertie	S.							
CO3: Understand the cor	fluent hypergeometric function	and familiar with its definition							
and elementary results.	including recurrence relation	s, which help simplify and							
transform the function in	various mathematical contexts.								
CO4: Understand the Le	gendre functions and their prope	erties.							
CO5: Understand the Be	ssel functions and their propertie	es.							
CO6: Understand the H	lermite polynomials, Laguerre	polynomials, and Associated							
Laguerre polynomials, including their definitions, recurrence relations, generating									
functions, and integral representations.									
	Topics								
Unit I: The Gamma and Bet	a Function: Preliminaries Euler	's integral for Gamma (Z)							
Gamma and Beta functions	and its elementary properties. Fa	ctorial function. Legendre's							
duplication formula, Gauss l	Multiplication formula, Incomple	ete gamma function.							
Unit II: Incomplete beta fur	ction. Riemann Zeta function an	nd simple properties.							
Unit III: The Hypergeometr	ric Function: Definition, Integral	representation of							
hypergeometric function, Tr	ansformations, Gauss's hypergeo	ometric functions and its							
elementary properties.									
Unit IV: Gauss's hypergeon	netric differential equation and it	ts solution, Evaluation of							
hypergeometric function.									
Unit V: Relations of contigu	ity, Generalized Hypergeometri	c series, the function of $_{\rm u}F_{\rm v}$,							
Bilateral hypergeometric ser	ies.								
Unit VI: Kummer's function	n (The Confluent hypergeometric	e function): Definitions and							
some elementary results, Re	currence relations, The different	ial equation, Kummer's first and							
second formula, Addition an	d multiplication theorems, Integ	ral representations, Basic							
properties of 1F1, Special cas	es and its relation to other functi	ions, Products of Kummer's							
tunctions.									
Unit VII: Basic properties of	t 1F1, Special cases and its relation	on to other functions, Products							
of Kummer's functions.	T 1 1 1 00 (1 1)								
between I according function	the function $\mathbf{P}(\mathbf{x})$ and $\mathbf{Q}(\mathbf{x})$. More	tion and its solution, Kelations							
functions, Redrigue's formula Integral representations									
Iunctions, Kodrigue's formula, Integral representations.									
Chie IX, megrais moolving	, Legendre runetions, Associated								

Unit X: Bessel functions: Bessel differential equation and its solution, Bessel's functions $J_u(x)$, recurrence relation, generating functions, integral representation, and orthogonality of Bessel functions, modified Bessel function and its properties.

Unit XI: Hermite polynomials and Properties.

Unit XII: Laguerre polynomials, Associated Laguerre polynomials.

Suggested Books:

- 1. Sharma J.N. and Gupta R.K., (2020), Differential equations with Special Functions, Krish. na Publications.
- 2. Bansal J.L. and Dhami H.S., (2004), Differential Equations, Voll-II, Jaipur Publishing House.
- 3. Rainville E.D., (1960), Special Function, The Macmillan Company, New York.
- 4. Andrews G.E., Askey R. and Roy R., (1999), Special Function, Cambridge University Press.
- 5. Wang Z.X. and Guo D.R., (2010), Special Function, World Scientific.

	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO					1	JY					<					
1	3	3	3	1	1	1	2	3	2	3	2	2	3	3	2	1
CO				1 .	1			-			0.5	1				
2	3	3	2	1	1	1	2	3	1	3	2	2	3	3	2	1
CO				N				1	1.5				2			
3	3	3	3	1	1	1	2	3	1	3	2	2	3	3	2	1
CO			1	1			1	1					lu			
4	2	2	2	1	1	2	2	3	1	2	2	2	2	2	2	1
CO			1 7					5					1			
5	2	2	2	1	1	1	2	3	1	2	2	2	2	2	2	1
CO									-	-						
6	2	2	2	1	1	1	2	3	1	2	2	2	2	2	2	1

JAIPUR

	Course: Mathematics									
Prerequisite: Having calculus, and r	Prerequisite: Having a good understanding of mathematics (especially linear algebra, calculus, and numerical methods) is essential for working with MATLAB.									
Semester:	Core:	Program/Class:								
I	DSC(Practical)	M.Sc. (Mathematics)								
Course Code:	Course Title:									
PGMAT106	MATLAB									
	Course C	Outcomes:								
At the end of the cour	rse, students will be able to	0-								
CO1: Creating, savin	g and executing the script	file and function file.								
CO2: Solve the linea	r equation and the system	of linear equations.								
CO3: Fit a polynomi	al curve, linear curves and	nonlinear curves.								
systems of reference	in a plane using its maule	matical properties in the different coordinate								
systems of reference.	8	The second								
	2	2)								
	DE	1 17								
	To	pics								
MATLAB Program	nming: Input output of d	ata from MATLAB command. File types								
Creating, saving ar	d executing the script fi	ile. Creating and executing functions file.								
Working with files	and directories. Matrix 1	nanipulation. Creating vectors. Arithmetic								
operations. Relation	al operations. Logical op	erations. Matrix functions. Determinant of								
matrix. Eigen values	and Eigen vectors.									
Line 2.5. Handes and Digen (Boots)										
Programming in 1	MATLAB: Function file	s, sub functions, global variations, loops,								
branches and contro	branches and control flow. Interactive input. Recursion. Publishing a report. Controlling									
command windows. Command line editing.										
Linear Algebra an	d Internalation · Solving	the linear equation Gaussian elimination								
matrix factorization	. curve fitting. polynomia	al curve fitting, least squares curve fitting.								
General nonlinear fi	ts. Interpolation.	<i>6,</i> 1								
Differential E and	iong and Cranhing Fir	st order and second order ODE Devili								
Differential Equations and Graphics: First order and second order ODE. Double										
tools Mesh and surf	a porynonnai. Two- and t face plots	mee-uniensional plots. MATLAB plotting								
	ace pions.									

Suggested Books:

- 1. Getting Started with MATLAB 7: Rudra Pratap; Oxford Press.
- 2. Applied numerical Methods using MATLAB: Won Young Yang, Tae-Sang-Chung, John Morris: John Wiley and Sons.
- 3. Solving ODE's with MATLAB: L.F. Shampine, I Gladwell, S. Thompson; Cambridge University Press.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	1	1	2	3	1	1	2	3	1	3	3	2	2	3	1	3
CO 2	3	3	3	3	2	2	2	3	2	3	3	3	2	3	2	2
CO 3	2	2	2	2	1.5	DP	1	2	1	2	2	1	3	3	2	1
CO 4	2	1	2	1	1	1	2	2	1	1	1	11	2	2	1	1

	Course: Mathematics	5								
Prerequisite: Strong foundat	ion in calculus, Two- and thre	ee-dimensional geometry,								
multivariable calculus, as we	ll as familiarity with curves, s	urfaces, and basic concepts in								
differential equations and vec	tor calculus.									
Semester: I	Core:	Program/Class:								
	DSE 1	M.Sc. (Mathematics)								
Course Code:	Course Title									
PGMAT104	Differential									
	Geometry									
	Course Outcomes:									
After studying this course, th	e student will be able to									
COI: Understand the conce	pts of graphs, level sets as so	olutions of smooth real valued								
CO2. Know line integrals	ingent space.	former and colorilate and longth								
co2: Know line integrals, be	e able to deal with differential	forms and calculate arc length								
CO3. Learn shout linear calf	adjoint Wain contan mana and	augusture of a plana sugue with								
cos: Learn about linear self-	adjoint weingarten maps and	curvature of a plane curve with								
applications in geometry and	physics.	anious machines on d the Course								
CO4: Study surfaces with boundaries and be able to solve various problems and the Gauss-										
Bonnet theorem.										
CUS: Learn to apply Clairaut's theorem, which relates the geodesic curvature and the										
normal curvature of a curve on a surface.										
analyzing and solving problem	ms in differential geometry	ons, curvature, and torsion in								
	Topics	31								
Unit I: Space curves, Tangent,	Contact of curve and surface	Osculating plane, Principal								
normal and Binormal, Curvatur	e, Torsion	o source in the prese of the part								
Unit II: Serret-Frenet's formul	ae, Osculating circle and Osc	lating sphere.								
Unit III: Existence and Unique	eness theorem for space curve	s. Bertrand curves. Involute and								
Evolutes.		-,								
Unit IV: Conoids, Inflexional	tangents, Singular points, Indi	catrix, Ruled surface.								
Developable surface.		,								
Unit V: Tangent plane to a rule	ed surface. Necessary and suff	icient condition that a surface								
should represent a developable	surface									
Unit VI: Metric of a surface, fi	rst fundamental form									
Unit VII: second fundamental	form Fundamental magnitud	es of some important surfaces								
orthogonal trajectories	form, i undumentar magintad	es of some important surfaces,								
Unit VIII. Normal curvature Principal directions and Principal curvatures first curvature										
Mean curvature. Gaussian curvature.										
Unit IX: Radius of curvature of a given section through any point on a surface										
Unit X: Third Fundamental Fo	rm Relation between fundam	ental forms								
Unit XI: Cononical goodosia a	austions, nature of goodogies.	on a surface of revolution								
Unit XII: Claimant's theorem	Normal property of goodesics	Torsion of a Goodosia								
Condesis surreture Cause Des	Normal property of geodesics,	Torsion of a Geodesic,								
Geodesic curvature. Gauss-Bot	met meorem.									

Suggested Books:

- 1. Somasundaram D., (2010), Differential Geometry: A First Course, Narosa Pub. House.
- 2. Thorpe J.A., (1979), Elementary Topics in Differential Geometry, Springer Verlag.
- 3. Tu W.L., (2010), An Introduction to Manifolds (2nd Ed.), Springer-Verlag, New York.
- 4. Willmore T.J., (1965), An Introduction to Differential Geometry, Oxford University Press.
- 5. O'Neill B., (1966), Elementary Differential Geometry, Academic Press, New York.

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	1	8	9	0	1	2	1	2	3	4
CO																
1	3	3	2	1	1	1	2	2	2	3	2	2	3	3	2	2
CO							-									
2	3	3	3	2	1	1	2	3	1	3	2	2	2	3	2	2
CO						-	. (36	0	31						
3	3	3	2	2	1	2	2	3	1	3	2	2	3	3	2	2
CO				/		2.						1				
4	3	3	3	2	1	1	2	3	1	3	2	2	3	2	2	2
CO				1 3	7			1000				V				
5	3	3	2	1	1	2	2	3	1	3	2	2	3	3	2	2
CO			1	~								-				
6	3	3	3	2	1	1	2	3	1	3	3	2	3	3	2	2

JAIPUR

Course: Mathematics										
Prerequisite: Strong foundation in calculus, Two- and three-dimensional geometry,										
multivariable calculus, as	well as familiarity with curves, su	urfaces, and basic concepts in								
differential equations and	vector calculus.									
Semester: I	Semester: I Core: DSE Program/Class:									
	1	M.Sc. (Mathematics)								
Course Code:	Course Title:									
UGCSE101/	Object Oriented									
UGCSE111 Programming										
with C++										

Course Outcomes:

- Identify importance of object oriented programming and difference between structured oriented and object oriented programming features.
- Able to make use of objects and classes for developing programs.
- Able to use various object oriented concepts to solve different problems.

Topics

Unit I: Different paradigms for problem solving, need for OOP, differences between OOP and Procedure oriented programming, Abstraction, Overview of OOP principles, Encapsulation, Inheritance and Polymorphism.

Unit II: C++ BASICS: Structure of a C++ program, Data types, Declaration of variables, Expressions, Operators, Operator Precedence

Unit III: Evaluation of expressions, Type conversions, Pointers, Arrays, Strings, Structures, Flow control statement- if, switch, while, for, do, break, continue, goto statements.

Unit IV: Structure and Union: Introduction, types of storage classes, Introduction to structures, Advantages of structures, accessing elements of a structure, nested structures, array of structures, functions and structures, Unions, bit- fields, enumerated data types.

Unit V: Functions-Scope of variables, Parameter passing, Default arguments, inline functions, Recursive functions, Pointers to functions.

Unit V: C++ Classes And Data Abstraction: Class definition, Class structure, Class objects, Class scope, this pointer, Friends to a class, Static class members, Constant member functions, Constructors and Destructors, Dynamic creation and destruction of objects

Unit VI: Data abstraction, Function overloading, Operator overloading, Inheritance: Defining a class hierarchy, Different forms of inheritance, Defining the Base and Derived classes

Text/Reference Books:

1. Problem solving with C++, The OOP, 4th Edition, Walter Savitch, Pearson Education.

2. C++, The Complete Reference, 4th Edition, Herbert Schildt, TMH.

3. C++ Primer, 3rd Edition, S.B.Lippman and J.Lajoie, Pearson Education.

4. The C++ Programming Language, 3rd Edition, B.Stroutstrup, Pearson Education.

5. Object Oriented Programming in C++, 3rd Edition, R.Lafore, Galgotia Publications pvt ltd.

OBJECT ORIENTED PROGRAMMING LAB WITH C++

Learning Outcomes

- The working of OOPS programming approach.
- The knowledge of object oriented programming style.
- The basic concepts involved in computer programming.
- Important programming aspects i.e object, class, inheritance and polymorphism.
- Knowledge with respect to the software development phase of OOPS.
- 1. Create a user defined function (any) and use it inside the program.
- 2. Implement "call by value" & "call by reference" function call techniques by using any user defined functions.
- 3. Implement the working of classes and objects by using any real world object.
- 4. Create any user defined class using the concept of static data and member functions.
- 5. Create a Class or program implementing the concept of passing and returning object to/from member functions.
- 6. WAP to implement polymorphism through function overloading (Area of different shapes).
- 7. Create a user defined type Complex and do all the Complex number arithmetic. And also make use of operator overloading.
- 8. Implement single level inheritance by using Student and Marks class.
- 9. Implement multilevel inheritance by using the Stack class.
- 10. Implement the concept of Abstract classes and virtual functions by using Shape, Rectangle and Triangle class.

							1.1.1		120							
	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO																
1	2	1	0	0	1	1	1	1	0	1	1	1	1	1	1	2
CO																
2	1	1	1	0	0	0	1	1	1	2	1	0	0	1	1	2
CO																
3	2	2	2	1	0	0	1	1	1	2	1	0	0	1	1	1
CO																
4	2	1	0	1	1	0	1	1	1	1	1	0	0	1	0	2
СО																
5	1	1	0	0	0	0	1	1	1	1	1	0	0	1	0	2

M.Sc. MATHEMATICS SCHEME EFFECTIVE FROM 2023-24									
		SEMESTER II							
Course Code	University Course Type	Course Name	Teaching						
			Internal	External	Credit				
PGMAT111	Discipline Specific Core	Mathematical	30	70	4				
	(Theory)	Programming							
PGMAT112	Discipline Specific Core	Advanced Numerical	30	70	4				
	(Theory)	Analysis							
PGMAT113	Discipline Specific Core	Integral Equations and	30	70	4				
	(Theory)	Calculus of Variations							
PGMAT114	Discipline Specific Core	Discrete Mathematical	30	70	4				
	(Theory)	Structures							
PGMAT115	Discipline Specific Core	Numerical Analysis Lab –	30	70	2				
	(Practical)	I							
PGMAT116	Department Specific	Functional Analysis	30	70	4				
	Elective 2 (Choose Any	Functional Analysis							
UGCSE216	One)	Computer System	30	70	4				
	124	Organization							

Γ

Syllabi of Courses in Semester II								
	Course: Mathematics							
Prerequisite: Strong foundatio	n in calculus, algebra, and fam	iliarity with Simplex method,						
duality and other problem in LI	PP.							
Semester: II	Core:	Program/Cla						
	DSC	SS:						
		M.Sc. (Mathematics)						
Course	Cou							
Code:	rse							
PGMAT1	Title							
11	:							
	Mathematical							
	Programming							

.....

Course Outcomes:

After studying this course, the student will be able to

CO1. Formulate the LPP, Conceptualize the feasible region, solve the LPP using different methods & understand the importance of LPP in daily life.

CO2. Proficient in formulating and solving pure and mixed integer programming problems for efficient optimization in real-world scenarios.

CO3. Gain a comprehensive understanding of the mathematical foundations of quadratic forms, constrained optimization, saddle points, and Kuhn-Tucker theory.

CO4. Gain a strong foundation in quadratic programming, enabling them to apply specialized methods.

CO5. Know about dynamic programming and its application to solve optimization problems with a finite number of stages, including linear programming problems.

CO6. Be equipped with the skills to analyze and design dynamic programming algorithms, making them well-prepared to address real-world decision-making challenges and optimize various processes efficiently.

Topics

Unit I: Introduction- Separating plane, supporting hyperplane and related theorems.

Unit II: Convex function, local and global maxima and minima, theorem based on convexity and concavity of quadratic forms.

Unit III: Simplex method and revised simplex method for solving L.P.P, bounded variable problems.

Unit IV: Integer programming- Pure and mixed integer programming problems, Gomory'scutting plane method, Branch and bound algorithm.

Unit V: Branch and bound algorithm for solving Integer Programming Problem

Unit VI: Quadratic forms and Lagrangian function, Saddle Points-Necessary and sufficient conditions for saddle points.

Unit VII: Classical optimization –Nonlinear programming problem.

Unit VIII: Kuhn-Tucker Theory and Kuhn-Tucker necessary and sufficient condition for NLPP.

Unit IX: Quadratic programming problem Wolfe's method for solving quadratic programming problems.

Unit X: Beale's method for solving quadratic programming problems.

Unit XI: Dynamic programming-Introduction Bellman's principle of optimality, solution of problem with finite number of stages.

Unit XII: Solution of LLP by Dynamic Programming.

Suggested Books:

- 1. Hiller F.S. and G. J. Leiberman G.J., (1995), Introduction to Operations Research (6th Edition), McGraw-Hill International Edition.
- 2. Hadley G., (1964), Nonlinear and Dynamic Programming, Addison Wesley.
- 3. Taha H.A., (2012), Operations Research An Introduction, Macmillan.
- 4. Swarup K., Gupta P.K. and Mohan M., (2008), Operations Research, Sultan Chand & Sons, New Delhi.
- 5. Rao S.S., (1979), Optimization Theory and Applications, Wiley Eastern.

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO					/	-		31	0	3A	1					
1	3	3	3	3	3	3	3	3	3	2	2	3	2	2	2	2
CO				1	-	2						1.				
2	3	3	2	3	3	3	2	3	3	2	2	3	3	3	2	3
CO				1.5	1			600	-			V				
3	3	3	3	2	2	2	3	2	3	2	2	3	3	3	2	2
CO				1					110			1		0		
4	2	2	2	3	2	2	2	2	2	1	2	2	2	2	1	2
CO			1.	1				-	1				7			
5	3	2	2	2	3	3	2	2	2	2	2	2	2	2	1	2
CO			1 1					-					0			
6	3	2	2	3	3	3	2	2	2	2	2	3	2	2	1	2

JAIPUR

Course: Mathematics											
Prerequisite: Strong foundation in calculus, algebra, and basic knowledge of interpolation, numerical integrations, ODE and System of linear and nonlinear equations.											
Semester: Core: DSC Program/Class: II MSc. (Mathematics)											
Course Code: PGMAT112	Course Title: Advanced Numerical Analysis	M.Sc. (Mathematics)									

Course Outcomes:

mpleting this course, the student will able to -

CO1: Use the iterative methods with algorithms to implement several numerical methods.

CO2: develop a strong understanding of polynomial equations and various root finding methods.

CO3: gain practical skills in solving real and complex roots of polynomials and be capable of applying these techniques to a wide range of real-world problems.

CO4: Apply various methods to solve System of simultaneous linear equations.

CO5: be equipped with practical skills to analyze data, select appropriate models, and apply regression and interpolation methods effectively by using curve fitting and function approximation techniques.

CO6: Apply various methods to find Numerical Solution of ordinary differential equations.

Topics

Unit I: Iterative methods- Theory of iteration method, acceleration of the convergence, Chebyshev method.

Unit II: Muler's method, Methods of multiple and complex roots.

Unit III: Newton Raphson's method for simultaneous equations, Convergence of iteration process in the case of several unknowns.

Unit IV: Solution of polynomial equations- Polynomial equation, Real and complex roots, Synthetic Division, Birge- Vieta method.

Unit V: Bairstow and Graeffe's root square method for solution of polynomial equations. **Unit VI:** System of simultaneous linear equations- Direct Method, Method of determinant, Gauss Jordan methods.

Unit VII: Lui –Factorization- Dolittle's, Crout's and Cholesky's Partion method.

Unit VIII: Method of successive Approximation- Conjugate gradient and relaxation methods.

Unit IX: Curve fitting and function Approximation- Least square error criteria, linear regression, polynomial fitting and other curve fittings.

Unit X: Approximation of functions by Taylor series and Chebyshev polynomials.

Unit XI: Numerical Solution of ordinary differential equations- Taylor's series method, Runge-Kutta method of fourth order.

Unit XII: Multistep method, Predictor-Corrector strategies, Stability Analysis- single and multistep methods. BVP's of ordinary differential equations- shooting methods, finite

difference methods.

Suggested Books:

- 1. Shastry, S.S., (2005), Introductory Methods of Numerical Analysis, PHI Learning Pvt. Ltd.
- 2. Xavier, C.C, (2007), Language and Numerical Methods, New Age Int. Ltd.
- 3. Gerald, C.F. and Wheatley, P.O., (2003), Applied Numerical Analysis, 7th Edition, Pearson Education Asia.
- 4. Bradie, B., (2007), A friendly introduction to Numerical Analysis. Delhi: Pearson Education.
- 5. Conte S.D., Boor C., (1980), Elementary Numerical Analysis, McGraw-Hill.

	РО	PO	PO	PO	РО	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO							-		-							
1	3	3	2	1	1	1	1	2	2	2	2	3	3	2	1	3
CO						-	9		B	1.						
2	2	2	1	1	1	1	1	2	2	1	2	2	2	3	2	2
CO				1	N						1					
3	2	2	2	2	2	2	1	2	2	2	2	2	2	2	2	2
CO				2				Sec.			1	V.				
4	2	2	2	3	2	2	2	2	2	2	2	2	2	2	1	3
CO				-			1		. 21			George				
5	2	2	2	2	2	2	1	2	2	1	2	2	2	3	2	2
CO			0													
6	2	2	1	1	1	1	1	2	2	2	2	2	2	2	1	2

JAIPUR

Course: Mathematics											
Prerequisite: Strong foun	dation in calculus, differential ec	quations, and familiarity with									
integral calculus and basic	properties of functions.										
Semester:	Core: DSC	Program/Class:									
II		M.Sc. (Mathematics)									
Course Code:	Course Title:										
PGMAT113	Integral										
	Equations and										
	Calculus of										
	Variations										

Course Outcomes:

After studying this course, the student will be able to

CO1: Formulate and solve initial and boundary value problems for the heat and wave equations in spherical and cylindrical coordinates.

CO2: Solve linear Volterra and Fredholm integral equations using appropriate methods.

CO3: Understand the relationship between integral and differential equations and transform one type into another.

CO4. Determine the solutions system of Volterra integral equations and integra-differential equation.

CO 5. Understand the Concept of Variation of functional and its property.

CO 6. Understand the Concept of Functional dependent on several unknown functions and their first order derivatives.

Topics

Unit I: Linear integral equations– Definition and classification. Conversion of initial and boundary value problems to an integral equation.

Unit II: Eigen values and Eigen functions. Solution of homogeneous and general Fredholm integral equations of First kind with separable kernels.

Unit III: Solution of Fredholm and Volterra integral equations of second kind by methods of successive substitutions and successive approximations.

Unit IV: Resolvent kernel and its results. Conditions of uniform convergence and uniqueness of series solution. Integral equations with symmetric kernels– Orthogonal system of functions.

Unit V: Fundamental properties of eigen values and eigen functions for symmetric kernels. Expansion in eigen functions and bilinear form.

Unit VI: Hilbert-Schmidt theorem. Solution of Fredholm integral equations of second kind by using Hilbert-Schmidt theorem.

Unit VII: Solution of Volterra integral equations of second kind with convolution type kernels by Laplace transform. Solution of singular integral equations by Fourier transforms.

Unit VIII: Classical Fredholm theory– Fredholm theorems. Solution of Fredholm integral equation of second kind by using Fredholm first theorem.

Unit IX: Series solution: Radius of Convergence, Method of Differentiation, Cauchy- Euler Equation.

Unit X: Solution near a regular Singular point (Method of Forbenius) for different cases, Particular Integral at point of infinity.

Unit XI: Calculus of variation-Functional, Variation of functional and its property, Variation problems with fixed boundaries.

Unit XII: Euler's Equation, Functional dependent on several unknown functions and their first order derivatives.

Suggested Books:

INEK

- 1. M.D. Raisinghania M.D., (2010), Integral Equations and Boundary Value Problems, S. Chand.
- 2. Shanti Swarup S., (2010), Integral Equations, Krishna Publications, Meerut.
- 3. Ross S. L., (2004), Differential Equations, New Delhi: John Wiley and Sons (2004).
- 4. Kanwal R.P., (1997), Linear Integral Equations, Birkhäuser Boston.
- 5. Bradie B., (2005), A friendly introduction to Numerical Analysis, Delhi: Pearson.

	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO																
1	3	3	3	1	1	1	1	2	2	2	2	2	2	2	1	2
CO																
2	2	2	2	1	1	1	1	2	2	2	2	2	2	2	1	2
CO						/	-	11	0	1						
3	2	3	2	1	1	1	1	2	2	2	2	2	2	2	1	2
CO					1	SP				- 1	1					
4	2	2	2	2	1	1	1	2	2	2	2	2	2	2	1	2
CO				/	6						1.1	1				
5	2	2	2	1	1	1	1	2	2	2	2	2	2	3	2	2
CO			1	1				-				1				
6	2	2	1	1	1	1	1	2	2	2	2	2	2	2	1	2

JAIPUR

Course: Mathematics											
Prerequisite: The prerequisite for discrete mathematics is to have understanding of											
e-calculus.											
Core:	Program/Class:										
DSC	M.Sc. (Mathematics)										
Course Title:											
Discrete											
Mathematical											
Structures											
	Course: Mathematic isite for discrete mathematics is c-calculus. Core: DSC Course Title: Discrete Mathematical Structures										

Course Outcomes:

After studying this course, the student will be able to

CO1: Understand the fundamental concepts, principles, and applications of combinatorics, including permutation and combination, binomial theorem, and multimodal coefficients.

CO2: Understand discrete numeric functions and generating functions. Define linear recurrence relations with constant coefficients.

CO3: Understand the fundamental concepts of propositional logic, including propositions, logical connectives, truth tables, tautologies, and contradictions, and apply this knowledge to analyze and evaluate logical expressions.

CO4: Identify and analyze equivalence relations and partial ordering relations in various contexts.

CO5: Develop a comprehensive understanding of graph theory fundamentals and apply them to analyze and study various types of graphs, including their properties, connectivity, and planarity.

CO 6: Analyze and describe the properties of trees, identify and construct spanning trees in graphs, understand the concept of minimal spanning trees and algorithms for their determination.

or

CO 6: Understand the groups, including their definitions, properties, and various types such as Abelian groups and permutation groups.

Topics

Unit I: Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimodal Coefficients.

Unit II: Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions.

Unit III: Generating functions, Solution by method of generating functions. The Pigeonhole and Generalized Pigeonhole Principles.

Unit IV: Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions.

Unit V: Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2-way predicate logic.

Unit VI: Posets Hasse Diagram and Lattices: Equivalence relation, Partial ordering relation, Job-Scheduling problem. Introduction of partially ordered set.

Unit VII: Hasse diagram of partially ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices.

Unit VIII: Graph Theory: Introduction and basic terminology of graphs, Planar graphs,

Multigraphs and weighted graphs, Isomorphic graphs, shortest path in weighted graph. **Unit IX:** Paths, Cycles, connectivity, Hamiltonian paths and circuits

Unit X: Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs, matching, vertex/edge covering.

Unit XI: Trees- Properties, Binary and Rooted Tree, Planar graph, region, homeomorphic graph and Dual graphs

Unit XII: Spanning Tree, Minimal Spanning Tree, Matrix representation of graphs. **Suggested Books:**

- 1. Edgar G. Goodaire and Michael M. Parmenter, (2005), Discrete Mathematics with Graph Theory, Third Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint.
- 2. Rosen, Kenneth H., (2012), Discrete mathematics and its applications, Seventh Edition, McGraw Hill Education.
- 3. Mott J.L., Kendel A. and Baker T.P., (2008), Discrete mathematics for Computer Scientists and Mathematicians, Prentice Hall of India Pvt Ltd.
- 4. Liu C.L. and Mohapatra D.P., (2008), Elements of discrete mathematics, Tata McGraw Hill.

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO				1 3	7			200				2				
1	3	3	2	1	1	1	1	2	2	2	2	2	3	3	2	1
CO				~				-				-	-			
2	2	2	1	1	1	1	1	2	2	2	2	2	2	3	1	2
CO			1	2					1	1			-	1		
3	2	2	3	1	1	1	1	2	2	2	2	2	2	3	2	1
CO			1 1										10			
4	2	2	2	2	1	1	1	2	2	2	2	2	2	2	1	2
CO				>		1										
5	2	2	2	1	1	1	1	2	2	2	2	2	3	3	2	2
СО				2		1					194		X			
6	3	2	1	1	1	2	1	2	2	2	2	2	2	2	1	2

	Course: Mathematics	
Prerequisite: Strong found	ation in calculus, differential equa	ations, and basic knowledge of
Sci-Lab and MATLAB		D ///
Semester: 11	Core: DSC	Program/Class:
	(Practical)	M.Sc. (Mathematics)
Course Code:	Course Title:	
PGMAT115	Numerical	
	Analysis Lab – I	
	Course Outcomes:	
After studying this course,	the student will be able to	
CO1. understand the key id	eas, concepts and definitions of th	ne computational algorithms, origins
of errors, convergence theo	rems.	
CO2. decide the best numer	rical method to apply to solve a giv	ven differential equation and quantify
the error in the numerical (a	approximate) solution.	
CO3. analyze an algorithm	's accuracy, efficiency and conver	rgence properties.
CO4: Typeset mathematica	ll formulas, use nested list, tabula	r & array environments.
	Topics	
List of Practicals (An	y eight using any software)	1.
1. Solution of quadratic e	quation.	
2. Solution of algebraic a	and transcendental equations.	
3. Solve the system of eq	uations by G <mark>auss-Seidel met</mark> hod.	2
4. Solve the system of eq	uations by Matrix inversion metho	od.
5. Solution of the system	of equations <mark>by Gaussian e</mark> limina	tion method.
6. Solve the 1 st order ordi	nary differential equation by Eule	r's method.
7. Solve the 1 st order ordi	nary differential equation by Eule	er's modified method.
8. Solution of 1 st order or	dinary differential equation by Ru	inge-Kutta methods.
9. Solution of numerical	ntegration by Trapezoidal method	1
10. Solution of numerical	integration by Simpson's 1/3 met	hod.
11. Solution of numerical	ntegration by Simpson's 3/8 meth	nod.
12. Introduction to LaTeX	and typesetting a simple document	nt.
13. Adding basic information	on to a document, Environments	by LaTeX.
S. A. I.B. I		
Suggested Books:	troductory Methods of Numerical	Methods PHI Second
Edition	roductory methods of rutiliciteal	
	JAIPUR	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	2	2	3	1	1	1	1	2	1	1	2	2	3	3	2	2
CO 2	3	3	3	2	1	1	1	2	1	3	2	2	2	3	1	3
CO 3	2	3	3	2	1	1	1	2	1	2	2	2	2	3	1	3
CO 4	1	1	1	1	1	1	1	2	1	1	2	1	1	2	2	2

	Course: Mathematics	
Prerequisite: Basic tools c	of Functional Analysis involvin	g normed spaces. Banach spaces
and Hilbert spaces their n	roperties dependent on the di	mension and the bounded linear
operators from one space to	another	
Semester: II	Core:	Program/Class.
Semester . II	DSF	M Sc. (Mathematics)
		Wi.Se. (Wathematics)
Course Code:	Course Title:	
PGMAT116	Functional	
	Analysis	
	Course Outcomes:	
After studying this course,	the student will be able to	
CO1. Understand normed	linear spaces with their proper	ties and familiar with the
concept of norm in a linear	space, enabling them to analyz	ze the magnitude and
convergence of vectors in s	such spaces.	
CO2. Understand the basic	properties of finite-dimension	al normed linear spaces,
compactness and able to an	alyze and compare norms on a	given vector space.
CO3. Understand the conti	nuous linear functionals in nor	med spaces and their
importance in functional ar	alysis.	
CO4: Understand the ortho	gonality in Hilbert spaces and	learn about orthonormal sets,
Bessel's inequality, comple	te orthonormal sets, and Parsey	val's identity, which provide
fundamental insights into the	he structure and completeness	of Hilbert spaces.
CO5. Learn how to compu	te the adjoint of various operat	ors and understand the
properties of adjoint operat	ors, such as self-adjointness an	d normality.
CO6 . Understand the role of	of projections in functional ana	lysis and their applications in
various mathematical conte	exts	ayers and men approximents in
		()
	The second	
-	T •	
	Topics	X
Unit I: Normed linear spaces,	Quotient space of normed line	ar spaces and its completeness.
U-: 4 U- D 1		No. 11
Unit II: Banach spaces and ex	camples, bounded linear transfo	ormations, Normed linear space
of bounded linear transformati	ons.	
Unit III: Equivalent norms, B	asic properties of finite dimens	sional normed linear spaces and
compactness		and horning minear spaces and
Unit IV: Reisz Lemma Multi	linear manning. Open manning	theorem Closed graph
theorem Uniform boundedness	theorem	, meorem, crosed graph
Unit V. Continuous linear fun	stienel Hohn Donach theorem	and its consequences
Unit V: Continuous intear lun	cuonal, Hann-Banach theorem	and its consequences.
Unit VI: Embedding and Refi	exivity of normed spaces, Dua	i spaces with examples.
Unit VII: Inner product space	s, Hilbert space and its propert	ies.
Unit VIII: Orthogonality and	Functionals in Hilbert Spaces.	Pythagorean theorem,
Projection theorem.		
Unit IX: Orthonormal sets, Be	essel's inequality, complete ort	honormal sets, Parseval's
identity.		
Unit X: Structure of a Hilbert	space, Riesz representation the	corem, Reflexivity of Hilbert
spaces.	- •	-
Unit XI: Adjoint of an operato	or on a Hilbert space, Self-adio	int, Positive, Normal and
Unitary operators and their pro-	perties.	, , ,
	1	

Unit XII: Projection on a Hilbert space. Invariance, Reducibility, Orthogonal projections. **Suggested Books:**

- 1. Taylor E., (1958), An Introduction to Functional Analysis, John Wiley.
- 2. Limaye B.V., (2014), Functional Analysis, Wiley Eastern.

212

- 3. Kreyszig, E., (2006), Introductory Functional Analysis with Applications, John Wiley and Sons (Asia) Pvt. Ltd.
- 4. Simmons, G. F., (2008), Introduction to Topology and Modern Analysis.
- 5. Bachman, G. and Narici, L., (2000), Functional Analysis, Dover.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	3	2	1	1	1	1	1	2	2	2	2	2	3	2	2	1
CO 2	2	3	1	1	1	1	1	2	2	2	2	2	3	2	2	1
CO 3	2	2	3	1	1	1	1	2	2	2	2	2	3	2	2	1
CO 4	2	2	1	3	1	1	1	2	2	2	2	2	3	2	2	1
CO 5	2	2	1	12	2	1	1	2	2	2	2	2	2	2	1	2
CO 6	2	2	1 5	1	1	2	1	2	2	2	2	2	2	2	1	2

JAIPUR

Course: Mathematics											
Prerequisite: Basic tools of	Functional Analysis involvin	g normed spaces, Banach spaces									
and Hilbert spaces, their properties dependent on the dimension and the bounded linear											
operators from one space to	another.										
Somoston II	Core:	Program/Class:									
Semester: 11	DSE	M.Sc. (Mathematics)									
Course Code:	Course Title:										
UGCSE214	Computer										
	Systems										
	Organization										
	-										
	Course Outcomes:										
After studying this course, the	he student will be able to										

CO1. Understand the hardware components and concepts related to the control design

CO2. Familiarize with addressing modes, different types of instruction formats

CO3. Learn about various I/O devices and the I/O interface.

CO4. Gain the concepts related to the memory organization.

CO5. Understand the theoretical concept of parallel processing and multiprocessing.

Topics

Unit I: Fundamental of Computer Design: Basic Structure of Computers, Computer Types; Functional Units; Bus structure; Performance- Processor Clock, Basic Performance Equation, Clock rate; Historical Perspective; Machine Instructions and Programs: Numbers, Arithmetic Operations and Characters; Memory Location and Addresses; Memory Operations; Instructions and Instruction Sequencing.

Unit II: Instruction set, Assembly language and input/output Organization:

Machine Instructions and Programs: Addressing Mode; Assembly Language; Basic input and Output Operations; Stacks and Queues; Subroutines; Encoding of Machine Instructions; Accessing I/O Devices; Interrupts- Interrupt Hardware; Enabling and Disabling Interrupts; Handling Multiple Devices; Controlling Device Requests; Exceptions; Direct Memory Access; Standard I/O Interfaces-PCI Bus, SCSI Bus, USB.

Unit III: The Memory System: Basic Concepts: Semiconductor RAM Memories, read only memories, speed, size, and cost, cache memories- mapping functions, replacement algorithms; cache performance; cache optimization; Virtual memory; Protection: Virtual memory and virtual machines.

Unit IV: Arithmetic for Computers: Addition and subtraction of signed numbers, design of fast adders, multiplication of positive numbers, signed operand multiplication, fast multiplication, integer division, floating-point numbers and operations.

Unit V: Pipelining and Parallel Processing: Introduction to Pipelining; Implementation of pipeline; Instruction level parallelism concepts and challenges: Overcoming data hazards with dynamic scheduling; hardware-based speculation; Exploiting ILP using multiple issue and static scheduling; Introduction to multicore architecture.

Suggested Books:

- 1. Hayes J. P., (2012), Computer Architecture and Organization, 3rd Edition, McGraw Hill.
- 2. Morris Mano M., (2017), Computer System Architecture, 3rd Ed, Pearson Education.
- 3. Hamacher C., and Zvonko V., (2011), Computer Organization, 5th Edition.

- 4. Hennessey J.L. and Patterson D.A., (2006), Computer Architecture, A Quantitative Approach, 4th Edition, Morgan Kaufmann.
- 5. Hwang K., (2010), Advanced Computer Architecture Parallelism, Scalability, Programmability, 2nd Edition, Tata Mc Graw Hill.

	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO																
1	2	1	1	1	0	0	1	1	1	2	1	0	1	1	1	2
CO																
2	2	1	1	1	0	0	1	1	1	2	1	0	0	1	0	1
CO																
3	1	1	1	1	0	0	1	1	1	2	1	0	0	1	0	1
CO																
4	2	1	1	1	0	0	1	1	1	2	1	0	1	1	0	1
СО									1							
5	2	1	1	1	0	0	1	1	1	2	1	0	2	1	1	0

ADVANCED LINEAR ALGEBRA

Course Objective: The primary objective of this course is to introduce the tools of Linear algebra. This course emphasizes the application of techniques using the vector spaces, basis and dimension, rank of matrix, change of basis, linear transformations, dual space, inner product space (real and complex), adjoint of a linear operator, bilinear forms and their properties.

Courses Outcomes: On completion of this course, the student will be able to:

CO1. Appreciate the significance of vector spaces, basis and dimension.

CO2.Compute with the characteristic polynomial, eigenvalues, eigenvectors, and eigenspaces, as well as the geometric and the algebraic multiplicities of an eigenvalue and apply the basic diagonalization result.

CO3.Compute inner products and determine orthogonality on vector spaces, including Gram-Schmidt orthogonalization to obtain orthonormal basis.

Unit-I Vector spaces and its Properties

Unit-II Basis and dimension, rank of matrix, change of basis.

Unit-III Linear transformations -Algebra of linear transformation,

Unit-IV linear functional, dual space, dual basis,

Unit-V linear transformation of direct sum.

Unit-VI Elementary canonical form introductive, Characteristic values,

Unit-VII Annihilator polynomial. Invariant subspace, direct sum deco potion,

Unit-VIII invariant direct sum, primary decomposition theorem.

Unit-IX Inner product space- inner product(real and complex), adjoint operator hermition form,

Unit-V linear functional and adjoint unitary operator, normal operator.

Unit-XI Bilinear form : Bilinear form , symmetric bilinear form ,

Unit-XII Skew symmetric bilinear form, graphs preserving bilinear form.

Text Books:

1. K. Hoffman and Ray Kunje : Linear Algebra (Prentice - Hall of India private Ltd.)

2. J.S. Golan : Foundations of linear algebra (Kluwer Academic publisher (1995))

Reference Books:

1. M. Artin : Algebra (Prentice - Hall of India private Ltd.)

2. A.G. Hamilton : Linear Algebra (Cambridge University Press (1989))

3. N.S. Gopalkrishanan : University algebra (Wiley Eastern Ltd.)

4. J.S. Golan : Foundations of linear algebra (Kluwer Academic publisher (1995))

5. Henry Helson : Linear Algebra (Hindustan Book Agency (1994))

6. I.N. Herstein : Topics in Algebra, Second edition (Wiley Eastern Ltd.)

OPERATIONS RESEARCH

Course Objectives: One of the objectives of the course is to develop the conjugate duality theory and deal with some numerical techniques to solve a nonlinear problem. Further, the course aims to study

dynamic programming approach to solve different types of problems and to study optimal control

problems.

Course Outcomes: After studying this course, the student will be able to

CO1. have studied notions of sub-gradients and directional derivative for nondifferentiable functions.

CO2. understand the use of conjugate functions to develop the theory of conjugate duality. **CO3**. know numerical methods like gradient descent method, gradient projection method, Newton's method and conjugate gradient method.

CO4. deal with dynamic programming approach to solve some problems including stage coach problem, allocation problem and linear programming problem. CO5. know both classical and modern approaches in the study of optimal control problems.

Unit -I Nonlinear Programming, Quadratic Programming,

Unit -II Duality in Quadratic Programming Problems, Unconstrained Optimization,

Unit -III Direct search methods, Gradient Method,

Unit -IV Constrained Optimization, Separable Programming.

Unit -V Inventory Models-Deterministic and Probabilistic Models.

Unit -VI Queuing Theory-Characteristics of queuing systems,

Unit -VII Birth and death process, Steady state solutions,

Unit -VIII Single server model (finite and infinite capacities),

Unit -IX Single server model (with SIRO), Models with state dependent arrival and service rates, Waiting time distributions.

Unit -X Replacement Theory-Replacement of assets that deteriorate with time,

Unit -XI Replacement of items that deteriorate suddenly.

Unit -XII Project Scheduling by PERT, CPM.

Text Books:

1. F. S. Hiller and G. J. Leiberman, Introduction to Operations Research (6th Edition),

McGraw-Hill International Edition, 1995.

2. G. Hadley, Nonlinear and Dynamic Programming, Addison Wesley.

Reference Books:

1. H. A. Taha, Operations Research - An Introduction, Macmillan.

2. KantiSwarup, P. K. Gupta and Man Mohan, Operations Research, Sultan Chand & Sons,

New Delhi.

3. S. S. Rao, Optimization Theory and Applications, Wiley Eastern.

4. N. S. Kambo, Mathematical Programming Techniques, Affiliated East-West Press Pvt.

Ltd., NewDelhi.

Fluid Mechanics

Course Objectives: Prepare a foundation to understand the motion of fluid and develop concept, models and techniques which enables to solve the problems of fluid flow and help in advanced studies and research in the broad area of fluid motion.

Course Outcomes: After studying this course the student will be able to

CO1. understand the concept of fluid and their classification, models and approaches to study the fluid flow. formulate mass and momentum conservation principle and obtain solution for no viscous flow.

CO2. Understand the concept of stress and strain in viscous flow and to derive Navier-Stokes equation of motion and solve some exactly solvable problems.

CO3. know Eulerian and Lagrangian methods.

CO4. Understand Conservation Laws, Equation of energy, Irrotational and Rotational Flows, Bernoulli's equation,

Unit I Introduction to Fluids: Concept of fluids, Continuum Hypothesis.

Unit II Fluid Properties: Density, Specific weight, Specific volume.

Unit III Fluid Kinematics: Kinematics of Fluids, Eulerian and Lagrangian methods of description of fluids, Equivalence of Eulerian and Lagrangian methods.

Unit IV Motion of Fluid Elements: General motion of fluid elements, Integrability and compatibility conditions, Strain rate tensor.

Unit V Flow Visualization: Streamlines, Path lines, Streak lines.

Unit VI Special Fluid Lines: Stream function, Vortex lines, Circulation.

Unit VII Stresses in Fluids: Stress tensor, Symmetry of stress tensor.

Unit VIII Stress Transformation: Transformation of stress components from one coordinate system to another, principal axes and principle values of stress tensor

Unit IX Conservation Laws: Equation of conservation of mass, Equation of conservation of momentum, Navier-Stokes equation.

Unit X Conservation of Moments and Energy: Equation of moments of momentum, Equation of energy.

Unit XI Coordinate Systems and Boundary Conditions: Basic equations in different coordinate systems, Boundary conditions.

Unit XII Irrotational and Rotational Flows: Bernoulli's equation, Bernoulli's equation for irrotational flows, Two-dimensional irrotational incompressible flows, Blasius theorem. Circle theorem, Sources, sinks, and doublets in two-dimensional flows.

Reference Books:

- 1. An Introduction to fluid dynamics, R.K. Rathy, Oxford and IBH Publishing Co.1976.
- 2. Theoretical Hydrodynamics, L. N. Milne Thomson, Macmillan and Co. Ltd.
- 3. Fluid Mechanics, L. D. Landau and E.N. Lipschitz, Pergamon Press, London.
- 4. S. W. Yuan, Foundations of Fluid Mechanics, Prentice-Hall.

Mathematics In Multimedia

Course Objectives: The objective of this course is to provide students with a basic understanding of multimedia systems. This course focuses on topics in multimedia information representation and relevant signal processing aspects, multimedia networking and communications, and multimedia standards especially on the audio, image and video compression. All of these topics are important in multimedia industries.

Course Outcomes: After studying this course the student will be able to

CO 1: Students are expected to achieve a basic understanding of multimedia systems.

CO 2: Students would be able to evaluate more advanced or future multimedia systems.

CO 3: This course will also arouse students' interest in the course and further motivate them towards developing their career in the area of multimedia and internet applications.

Unit I Multimedia: Introduction to Multimedia, Concepts.

Unit II Uses of multimedia.

Unit III Hypertext and hypermedia; Image, video and audio standards.

Unit IV Audio: digital audio, MIDI.

Unit V processing sound, sampling, compression.

Unit VI Video: MPEG compression standards.

Unit VII Compression through spatial.

Unit VIII Temporal redundancy, inter-frame and intra-frame compression.

Unit IX Animation: types, techniques.

Unit X Key frame animation, utility, morphing.

Unit XI Introduction to Virtual Reality (VR), Key concepts and principles of VR.

Unit XII VR applications and its role in multimedia.

Text Books:

- 1. Mukherjee, Fundamentals of Computer graphics & Multimedia, PHI.
- 2. Elsom Cook "Principles of Interactive Multimedia" McGraw Hill

Reference Books:

- 1. Sanhker, Multimedia A Practical Approach, Jaico.
- 2. Buford J. K. "Multimedia Systems" Pearson Education.

MATHEMATICAL MODELING

Course Objectives: The objective of the course is to familiarize the students to understand the concepts to relate the differential equations with mathematical models in the manner of daily life problem, and geometrical and physical meaning of solutions of differential equations.

Course Outcomes: At the end of the course, students will be able to-

CO1.know about the concepts, uses and techniques of differentiation equations

CO2.Solve and use the differential equations in mathematical modeling,

CO3.Relate the biological, medicinal, physical, economic, environmental problems with mathematics and solve them by differential equation methods.

Unit-I Introduction to Mathematical Modeling using Differential Equations: Principles of Mathematical Modeling.

Unit II Compartment Model, Population Models, Framing of Population Model.

Unit III Growth and Decay, Drug absorption (Case of single cold pill, Case of a course of cold pills).

Unit-IV Applications of First Order Differential Equations: Reaction to Stimulus, Alcohol Absorption (Accident Risk), Artificial Kidney Machine,

Unit V The Spread of Technological Innovations, Rocket flight.

Unit-VI Applications of first Order Linear Differential Equations: Sales Response to Advertising, Art Forgeries, Electric Circuits.

Unit VII Pollution of the Great Lakes, Exploited Fish Populations, Neoclassical Economic Growth.

Unit-VIII Applications of Second Order Linear Differential Equations: Mechanical Oscillations, Consumer Buying Behavior.

Unit IX Electrical Networks and Testing for Diabetes.

Unit-X Applications of Systems of Differential Equations to Models: Spring-Mass System, The

Unit XI Dynamics of Arms Races, Epidemics.

Unit XII Interacting Species, Competing Species (The Struggle for Existence).

Text Books:

1. D. N. Burghes, Modelling with Difference Equations, Ellis Harwood and John Wiley.

2. J. N. Kapur, Mathematical Modelling, Willey Eastern Limited, Reprint, 2000.

Reference Books:

1. D. J. G. James and J. J. Macdonald, Case studies in Mathematical Modelling, Stanly Thames, Cheltonham.

2. . M. Crossand and A. O. Moscrcadini, The art of Mathematical Modelling, Ellis Harwood and John Wiley.

3. C. Dyson, Elvery, Principles of Mathematical Modelling, Academic Press, New York.

Wavelet Analysis

Course Objective: To expose the students to the basics of wavelet theory and to illustrate the use of wavelet processing. The student should reach good comprehension in the fields of Fourier series and the Fourier transform, theory of distributions Multi resolution analysis (MRA) Some commonly used wavelet systems.

Course Outcomes: Students are able to

CO1: understand about Fourier transform and difference between Fourier transform and wavelet transform.

CO2: understand wavelet basis and characterize continuous and discrete wavelet transforms

CO3: understand multi resolution analysis and identify various wavelets and e valuate their time- frequency resolution properties

CO4: implement discrete wavelet transforms with multidate digital filters

Unit I Fourier analysis: Fourier and inverse Fourier transforms, Convolution and delta function.

Unit II Fourier transform of Square integrable functions.

Unit III Fourier series, Basic Convergence Theory and Poisson's Summation formula.

Unit IV Wavelet Transforms and Time Frequency Analysis: The Gabor Transform. Short-time Fourier transforms and the uncertainty principle.

Unit V The integral wavelet transforms Dyadic wavelets and inversions. Frames.

Unit VI Wavelet Series. Scaling Functions and Wavelets: Multi resolution analysis, scaling functions with finite two scale relations.

Unit VII Direct sum decomposition of L2(R). Linear phase filtering.

Unit VIII Compactly supported wavelets, Wavelets and their duals.

Unit IX Orthogonal Wavelets and Wavelet packets, Example of orthogonal Wavelets.

Unit X Identification of orthogonal two-scale symbols.

Unit XI Construction of Compactly supported orthogonal wavelets.

Unit XII Orthogonal wavelet packets, orthogonal decomposition of wavelet series.

Textbooks

1. E. Hernandez & G. Weiss, A First Course on Wavelets, CRC Press, 1996.

2. L. Prasad & S. S. Iyengar, Wavelet Analysis with Applications to Image Processing, CRC Press, 1997.

Reference Books:

1. C. K. Chui, A First Course in Wavelets, Academic press NY 1996.

2. I. Daubechies, Ten Lectures in Wavelets, Society for Industrial and Applied Maths, 1992.

Fuzzy Sets and Applications

Course Objectives: The main objective of the course is to familiarize the students with the basic concepts of set theory and fuzzy set theory. The course will develop a depth understanding of fuzzy sets and its applications into real life problems. which in turn help in life-long self-learning.

Course Outcomes: At the end of the course, students will be able to-

CO1.Understand the role of membership and fuzzy sets in decision making problems.

CO2. apply knowledge of fuzzy sets to minimize uncertainty in real life scenario.

Unit I Fuzzy sets - Basic definitions, level sets, convex fuzzy sets.

Unit II Basic operations on fuzzy sets - Types of fuzzy sets - Cartesian products.

Unit III Algebraic products bounded sum and difference.

Unit IV Extension principle and application.

Unit V Zadeh extension principle, image and inverse image of fuzzy sets.

Unit VI Fuzzy numbers – Elements of fuzzy arithmetic.

Unit VII Fuzzy relations on fuzzy sets, The union and intersection of fuzzy relation.

Unit VIII Composition of fuzzy relations – Min-max composition and its properties. Fuzzy equivalence relation.

Unit IX Fuzzy Decision-Fuzzy linear programming problem. Symmetric fuzzy linear programming problem-

Unit X Fuzzy linear programming with crisp objective function-Fuzzy graph.

Unit XI Fuzzy logic: An overview of classic logic, its connectives – Tautologies – Contradiction fuzzy logic.

Unit XII Fuzzy quantities – Logical connectives for fuzzy logic Applications to control theory.

Text Books:

1. G. J. Klir& B. Yuan, "Fuzzy sets and Fuzzy logic; Theory and Applications", Prentice Hall of India 1995.

2. K. H. Lee, First Course on Fuzzy theory and Applications", Springer, 2004

Reference Books:

1. Didier Dubois, Henri M. Prade, "Fuzzy Sets and Systems: Theory and Applications", Academic Press, 1994.

2. H. J. Zimmermann, Fuzzy set theory and its applications, Allied publishers Ltd., New Delhi, 2001.

Mathematical Statistics

Course objectives: The objective of this course is to provide an understanding for the graduate business student on statistical concepts to include measurements of location and dispersion, probability, probability distributions, sampling, estimation, hypothesis testing, regression, and correlation analysis, multiple regression

Learning Outcomes:

CO1: Demonstrate knowledge of, and properties of, statistical models in common use,

CO2:. Understand the basic principles underlying statistical inference (estimation and hypothesis testing).

CO3: Be able to construct tests and estimators, and derive their properties,

CO4: Demonstrate knowledge of applicable large sample theory of estimators and tests.

Unit 1 Random variables and distribution functions (univariate and multivariate); expectation and moments. Independent random variables,

Unit 2 Marginal and conditional distributions. Characteristic functions.

Unit 3 Uniform, Binomial, Poisson, Geometric and Negative Binomial distributions and their properties.

Unit 4 Continuous distributions: Uniform, Normal and Exponential distributions and their properties.

Unit 5 Types of Sampling, errors in sampling, Parameter and Statistic, Tests of Significance: Null Hypothesis,

Unit 6 Alternative Hypothesis, One-tailed, Two-tailed tests. Sampling Attributes:

Unit 7 Tests of Significance for single proportion and difference of proportions. Sampling of Variables.

Unit 8 Sampling Distributions: Chi-Square Distribution,

Unit 9 Moment generating function of Chi-Square and its applications.

Unit 10 Student's - *t* distribution. *F* and *Z* distributions.

Unit 11 Estimation Theory: Characteristics of Estimators, Efficient estimator, Most Efficient

estimator,

Unit 12 Minimum variance unbiased estimators. Methods of estimation.

Text Books: S.C. Gupta, Huber, Ross, Stapleton, Durrett , Adams , Schinazi

Reference Books:

- 1. Gupta, S. C., and Kapoor, V. K. *Fundamentals of Mathematical Statistics*, New Delhi: Sultan Chand & Sons, 2002.
- 2. E.J. Dudewicz and S.N.Mishra, Modern Mathematical Statistics, John Wiley and Sons, New York, 1988.
- V.K.Rohatgi An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern New Delhi, 1988(3rd Edn)
- 4. G.G.Roussas, A First Course in Mathematical Statistics, Addison Wesley Publishing Company, 1973
- 5. B.L.VanderWaerden, Mathematical Statistics, G.Allen&Unwin Ltd., London, 1968.
- 6. M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and sons.
- 7. Baisnab, and Jas, M. *Element of Probability and Statistics*, New Delhi: Tata McGraw Hill, 2001.

Differential Equation and Finite Element Analysis

Course Objectives: This course provides methods to solve non-linear differential equations, Riccati's equation, Monge's method to solve special type of second order partial differential equations, solution of Strum Liouville boundary value problems and an introduction to finite elements method with a focus on one dimensional problem in structures, heat transfer, static and dynamics

Course Learning outcomes: Upon completion of this course student should be able to:

CO 1. Solve non-linear differential equations, partial differential equations of order two with variable coefficients by different methods.

CO2. Understand the solutions of linear homogeneous boundary value problems.

CO3. Acquire the concept and purpose of Finite element methods.

CO4. Apply suitable boundary conditions to a global equation for axis symmetric and dynamic problems and solve them displacements, stress and strains induced.

Unit 1: Non-Linear differential equations of particular form. Riccati's equation - General solution and the solution when one, two or three particular solutions are known.

Unit 2 Total differential equations – necessary and sufficient equations,

Unit 3 Method of solution, geometric meaning of total differential equations.

Unit 4 : Partial differential equations of second order with variable coefficients- Monge's method,

Unit 5 Classification of Second order Partial differential equations with variable coefficients,

Unit 6 Canonical forms, Cauchy's problem for first order partial differential equations,

Unit 7 Method of separation of variables, Laplace wave and diffusion equations.

Unit 8: linear homogeneous boundary value problems. Eigen values and eigen functions, Strum Liouville boundary value problems. Orthogonality of eigen functions, Reality of eigen values.

Unit 9: General theory of finite element methods, Difference between finite element and finite difference, Review of some integral formulae,

Unit 10 Concept of discretization, Convergence requirements,

Unit 11 Different coordinates, One dimensional finite element, shape functions, stiffness matrix,

Unit 12 Connectivity, boundary conditions, equilibrium equation, FEM procedure.

Text Books:

1. Ross S. L., Differential Equations, New Delhi: John Wiley and Sons (2004).

2. Raisinghania, M.D. *Advanced Differential Equations*, New Delhi: S.Chand& Company Ltd. 2001

Reference Books:

1. George, F Simmons, *Differential equations with applications and historical notes*, New Delhi: Tata McGraw Hill, 1974.).

2. Sneddon I. N., *Elements of Partial Differential Equations*, New Delhi: Tata McGraw Hill (1957).

3. Piaggio H. T. H., *Differential Equations*, New Delhi: CBS Publisher (2004).

4. Braess, D., Schumaker and Larry L. *Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,* New York: Cambridge University Press, 2001.

5. Desai C. S. Introductory Finite Element Method, Boca Raton: CRC Press, 2001.

6.Smith, G. D. Numerical solution of Partial Differential Equations, Oxford: Clarendon Press, 1986.

7.Bradie, B. A friendly introduction to Numerical Analysis, Delhi: Pearson, 2005.

8.Reddy, J. N. An introduction to Finite Element Methods, Delhi: McGraw-Hill Higher Education, 2005.

JAIPUR

NUMERICAL ANALYSIS LAB- II

Course Objectives: The aim of this course is to enable students to design and analyze numerical methods to approximate solutions to differential equations and to acquaint students with the latest typesetting skills. This course is devoted to learning basic scientific computing for solving differential equations. The concept and techniques included in this course enable the student to construct and use elementary MATLAB, MATHEMATICA programs for differential equations.

Course Outcomes: After studying this course, the student will be able to

CO1.understand the key ideas, concepts and definitions of the computational algorithms, origins of errors, convergence theorems.

CO2.decide the best numerical method to apply to solve a given differential equation and quantify the error in the numerical (approximate) solution.

CO3.analyze an algorithm's accuracy, efficiency and convergence properties.

CO4: Typeset mathematical formulas, use nested list, tabular & array environments.

Solve (using any software):

- 1. Solution of Transportation problem by North-West Corner Method.
- 2. Solution of Transportation problem by Lowest cost entry method.
- 3. Solve Assignment problem
- 4. Solve Dual Simplex method
- 5. Solve mixed integer programming problem.
- 6. Solution of L.P.P. with one constraint.
- 7. Solution of L.P.P. with multiple constraints.
- 8. Local and Global optimization involving one variable.
- 9. Numerical non-linear local optimization of functions.
- 10. Numerical non-linear global optimization of functions.
- 11. Introduction of Footnotes, Sectioning and displayed material in LaTeX.
- 12. Accents and symbols, Mathematical Typesetting (Elementary and Advanced) in LaTeX.

NE

Text Books:

- 1. Hamdy A. Taha, "Operations Research an Introduction", 8th Edition, Pearson Education, 2004.
- 2. F.S.Hillier& G.J. Lieberman, "Introduction to Mathematical programming", McGraw-Hill International Edition, 2010.

Reference Books:

- 1. S.S. Rao, "Optimization: Theory and Applications", 2nd Edition, Wiley EasternCompany, 2010.
- 2. Bazaara, Shetty and Sherali, "Non-linear Programming: Theory and Algorithms", Wiley Eastern Company, 2006.
- Robert E. Larson and John L.Casti, "Principles of Dynamic Programming", reprint, 2011.

CRYPTOGRAPHY

Course Objectives: This course aims at familiarizing the students to cryptography. Classical ciphers and their cryptanalysis have been discussed. Linear feedback shift registers have been studied. RSA and Diffie Hellman key exchange have been described.

Course Outcomes: After studying this course, the student will

CO1. Have been introduced to the concept of secure communication and fundamentals of cryptography.

CO2. Know classical ciphers such as Vigenere Cipher and Hill Cipher.

CO3. Have insight into DES and AES.

CO4. Be familiar with secure random bit generator and linear feedback shift register sequences.

CO5. Know of RSA, attacks on RSA, Diffie-Hellman key exchange and ElGamal, public key cryptosystem.

Unit-I Time estimates for doing arithmetic - Divisibility

Unit-II the Euclidean algorithm –Congruences - Modular exponentiation - Some applications to factoring.

Unit-III Finite Fields - Multiplicative generators

Unit-IV Uniqueness of fields with prime power elements - Quadratic residues and reciprocity.

Unit-V Some simple crypto systems - Digraph transformations -

Unit-VI Enciphering Matrices - Affine enchipering transformations RSA -

Unit-VII Discrete Log - Diffie-Hellman key exchange -

Unit-VIII The Massey – Omura cryptosystem - Digital Signature standard - Computation of discrete log.

Unit-IX Pseudo primes - Strong pseudo primes - Solovay-Strassen Primality test -

Unit-X Miller - Rabin test - Rho method - Fermat factoring and factor bases - Quadratic sieve method.

Unit-XI Elliptic Curves - Elliptic curve primality test - Elliptic Curve factoring -

Unit-XII Pollard's p – 1 method -Elliptic curve reduction modulo n - Lenstras Method. **Text Books:**

1. J.A. Buchmann, Introduction to Cryptography, Second Edition, Springer 2003.

Reference Books:

1. Neal Koblitz, "A course in Number Theory and Cryptography", 2nd Edition, Springer-

Verlag, 2010.

2. Menezes A, Van Oorschot and Vanstone S.A, "Hand book of Applied Cryptography", Taylor & Francis, 1996.

7 Procedure for Admission, Curriculum Transaction and Evaluation

The proposed programme in ODL mode will be conducted by CDOE-VGU with the support of various departments of the University. Eligibility criteria, course structure, detailed curriculum, duration of programme and evaluation criteria shall be approved by Board of Studies and Academic Council, VGU, Jaipur which are based on UGC guidelines for the programmes which comes under the purview of ODL and Online mode for award of Degree.

Details of Procedure for admission in which eligibility criteria for admission and fee structure of the course, Curriculum includes Program delivery, norms for delivery of courses in ODL mode, use of IT services to academic support services, course design academic calendar and Evaluation which includes Distribution of Marks in Continuous internal assessments, Minimum Passing criteria and system of Grading formats are given in detail as under.

Procedure for Admission

Students who will seek admission in M.Sc. Mathematics (ODL Mode) programme to apply through its website.

Minimum Eligibility Criteria for Admission

The minimum eligibility criteria for admission in ODL and Online M.Sc. Mathematics programme is a pass in Graduation (Mathematics) from any Recognized University.

Programme Fee and Financial Assistance Policy

Program fees for students for proposed M.Sc. Mathematics in various streams offered by CDOE-VGUCDOE-VGUCDOE-VGU Jaipur is ------

Curriculum Transactions

Programme Delivery

The curriculum will be delivered through the Self Learning Materials (SLMs) supported by various learning resources including audio-video aids through ICT.

Academic Calendar

		Tentative months schedule(specify months) during Year								
Sr no	Name of the Activity	From (Month)	To (Month)	From (Month)	To (Month)					
1	Admission	Jul	Sep	Jan	Feb					
2	Assignment Submission (if any)	Oct	Nov	April	May					
3	Evaluation of Assignment	Nov	Dec	May	June					
4	Examination	Dec	Jan	June	Jul					
5	Declaration of Result	Feb	Mar	Aug	Sep					
6	Re-registration	Jan	Feb	Jul	Sep					
7	Distribution of SLM	Jul	Sep	Jan	Feb					
8	Contact Programmes (Counselling, Practical's, etc.)	Nov	Dec	May	June					

Evaluation

The evaluation shall include two types of assessments- 1. Continuous Assessment in the form of assignments, and 2. Summative Assessment in the form of end semester examination. End semester examination which will be held with proctored examination tool technology.

Passing Minimum

The students are considered as passed in a course if they score 40% marks in the Continuous Evaluation (Internal Assessment) and end-semester Examinations (External Assessment).

Marks and Grades

Grades & Grade Points

- a. At the end of the Semester / Year every student is assigned a 'Letter Grade' based on his/her performance over the semester in all courses for which he/she had registered.
- b. The letter grade and grade point indicate the results of quantitative and qualitative assessment of the student's performance in a course.
- c. There are seven letter grades: AA, A, BB, B, CC, C and NC that have grade points with

values distributed on a 10 point scale. The letter grades and the corresponding grade points on the 10-point scale are as given in the following table. In addition to these, the letters in grades cards **I**, **W**, **and GA** are used which stand for Incomplete, Withdrawal and Grade Awaited, respectively. The grades for Audit Course shall be S (Satisfactory) or X (Not satisfactory).

Lower Range of Marks	Grade Awarded, if m	arks falls in range	Upper Range of Marks
	UG	PG	
\geq Mean + 1.5 σ	AA	AA	
\geq Mean + 1.0 σ	А	А	< Mean + 1.5 σ
\geq Mean + 0.5 σ	BB	BB	< Mean + 1.0σ
≥Mean	B	B	< Mean + 0.5 σ
≥Mean -0.5 σ	CC	CC	<mean< td=""></mean<>
≥Mean – 1.0 σ	C	NC	< Mean -0.5 σ
- /	NC	-	< Mean – 1.0 σ
- / -	Ab (Absent)	Ab (Absent)	21
- / マ	W(Withdrawal)	W(Withdrawal)	m
- 12	GA(Grade Await <mark>ed)</mark>	GA(Grade Awaited)	R
- LU	S(Satisfactory)	S(Satisfactory)	S
- >	X(Not Satisfactory)	X(Not Satisfactory)	11

8 Requirement of the Laboratory Support and Library Resources

Laboratory Support

MSc (Mathematics) Programme in ODL Mode does not require any Laboratory Support except IT Tools

Library Resources

CDOE-VGU has excellent library withall the books required for the course learning and reference books for the course of M.Sc. Mathematics. Adequate online learning links and e-learning materials will also be provided to students whichwill be support students in their learning cycle.

9 Cost Estimate of the Programme and the Provisions

The Estimate of Cost & Budget could be as follows (all figures on Annual basis) :

Recurring Expenses (A)	
Number of Courses	24
Number of Counseling Sessions	10 per course
Cost Per Counselling Session	Rs.1000.00/hour/Session
Cost for all Course – Counselling Charges	10,000
Total cost of Counseling Sessions for all courses	2,40,000
Administrative Expenditure per Semester	20,000/month
Total Administrative Expenditure for the duration of the programme	4,80,000
Total Recurring Expenses (A)	7,20,000
Fixed Cost (B) Study Material Development	
Course Development /Course	90,000
Course Development for 24 courses (Writing/editing/vetting Cost)	21,60,000

10 Quality assurance mechanism and expected Programme Outcomes

The quality of the program depends on the course curriculum and syllabus which meets the requirement of the industry and creates the skillful learning in the students. The ultimate aim of M Sc. (Mathematics) program in ODL Mode is to enhance skills of the learners as managers, entrepreneurs and seeing them excel in their profession and meeting global standards too by upgrading their career opportunities.

The CDOE-VGU has constituted Centre for Internal Quality Assurance (CIQA). The CIQA will do periodic assessment of the online learning course material and audio video tutorials and will assure that the quality of learning is maintained and time to time changes are made as per the requirement of the course. The CIQA will also access the quality of assignments, quizzes and end term assessment time to time and required changes will be assured by them to maintain the quality of the learning program. CIQA will assure that the learning is made a truly global experience for the learner along with inculcation of required skills in the learner as expected program outcome with CDOE-VGU, Jaipur.

The university will work continuously for the betterment of processes, assessments, teaching methodology, e-learning material improvisation as per four quadrant approach and implementation of the same as per New Education Policy. The University is committed to deliver the best education in all the learning modes with adherence to NEP, UGC and other regulatory guidelines in truly Global sense.

To monitor quality of Student Support Services provided to the learners, it is proposed to obtain Feedback annually as per the details given below:

S No	Feedback Questions	Answers & Remarks
1	Your Name	
2	Your Programme	
3	Your Enrollment Number	
4	Year of Study: Mention – I, II, III, IV, V, VI Semester / 1 st , 2 nd , 3 rd Year	
5	Your Mobile Number:	
6	Your Email ID	
7	Are you in service / employed? Mention – Yes / No	DBA
8	Have you received your Identity Card in time? Mention - Yes / No	· UN
9	Have you received your study material in time? Mention - Yes / No	VE VE
10	How do you rate quality of the study material? Mention - Excellent / Good / Poor:	RS
11	Have you attended the counselling session? Mention - Yes / No:	YT
12	How do you rate quality of the counselling sessions conducted? Mention - Excellent / Good / Poor:	
13	Have you submitted Assignments / Projects? Mention - Yes / No	
14	Are you satisfied with the evaluation of your Assignments / Projects? Mention - Yes / No	U R
15	Are you receiving feedback from your academic counsellors on your assignment responses? Mention – Yes / No	
16	Have you availed Library Services of VGU? Mention - Yes / No	
17	If Yes, how do you rate the quality of library services Mention - Excellent / Good / Poor	
18	Have you appeared in the examinations conducted by CDOE-VGUCDOE-VGUCDOE-VGU?	
	Mention - Yes / No	

ACADEMIC SESSION:

19	If Yes, mention the quality of conduct of the	
	examinations.	
	Mention - Excellent / Good / Poor	
20	Are you satisfied with evaluation of your	
	examination papers?	
	Mention - Yes / No	
21	If No mention reason thereof	
21	ii ivo, mendon reason diereor.	
22		
22	Are you getting result in time?	
	Mention - Yes / No	
23	Are you receiving your mark sheets in time?	
	Mention - Yes / No	
24	Are your grievances redressed satisfactorily at	
	CDOE-VGUCDOE-VGUCDOE-VGU?	
	Mention Yes / No	
25	How do you rate the quality of responses given toyou	
	at CDOE-VGUCDOE-VGUCDOE-VGU?	1P /
	Mention - Excellent / Good / Poor	DAI
26	How do you rate the information given on the	1 2
	website about your studies?	0.
	Mention - Excellent / Good / Poor	1
27	Are you satisfied studying at CDOE-VGUCDOE.	
27	VGUCDOE-VGU - Ves / No	4
	VGCCDOL-VGC - 1C3/100	
28	Will you recommend your friends and relatives to get	2
20	will you recommend your mends and relatives toget	(0)
	Montian Vac / No.	07
		2
		2.
		3.
		4.
		5.

GENERAL REMARKSAND SUGGESTIONS FOR IMPROVEMENT: (Attach additional sheet, if required)

Date: _____

SIGNATURE OF THE STUDENT